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VIEWPOINTS

Using EDF Measures to Identify At-
Risk Names – A Monitoring & Early
Warning Toolkit
Summary
Moody’s Analytics’ Public Firm EDFTM (Expected Default Frequency) credit measures are
forward-looking probabilities of default, available on a daily basis, for over 42,000 corporate
and financial firms, globally, with publicly traded equity. Like fundamental credit analysis,
the EDF model quantifies business and financial risk, but unlike fundamental credit analysis,
it employs both balance sheet information and financial market data to determine default
risk. The market value-based approach of the EDF model benefits from the forward-looking
nature of financial markets and markets’ real-time updating of companies’ expected future
cash flows. As a result, EDF measures provide timely warning of changes in credit risk. Regular
model validation demonstrates the power of EDF measures to rank order firms by default
risk, to signal credit distress well before default, and, in the aggregate, to be consistent with
the level of observed default rates. In this report, we outline a practical approach for using
EDF measures to effectively monitor large portfolios of firms and proactively identify at-
risk names. The Early Warning Toolkit, as we call it, recommends tracking five EDF-related
metrics associated with elevated default risk:

» EDF level – whether a company’s EDF level exceeds a set threshold

» EDF change – measured as year-over-year percent change

» Relative EDF level – EDF level relative to a company’s industry peer group median EDF
level

» Relative EDF change – EDF change relative to a company’s industry peer group median
EDF change

» Slope of the EDF term structure – whether the term structure is inverted

http://www.surveygizmo.com/s3/1133212/Rate-this-research?pubid=1024578
http://v3.moodys.com/sites/products/ProductAttachments/CMRG_FAQ.pdf
mailto:capitalmarketsresearch@moodys.com
http://twitter.com/MA_CapitalMkts
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1. Introduction
Moody’s Analytics’ Public Firm EDFTM(Expected Default Frequency) credit measures are forward-looking probabilities of default,
available on a daily basis, for over 42,000 corporate and financial firms, globally, with publicly traded equity. Like fundamental credit
analysis, the EDF model quantifies business and financial risk, but unlike fundamental credit analysis, it employs both balance sheet
information and financial market data to determine default risk. The market value-based approach of the EDF model benefits from the
forward-looking nature of financial markets, and markets’ real-time updating of companies’ expected future cash flows. As a result, EDF
measures provide timely warning of changes in credit risk.

In this report, we outline a practical approach for using EDF measures to effectively monitor large portfolios of entities and proactively
identify firms most likely to default. The Early Warning Toolkit, as we call it, recommends tracking five EDF-related metrics associated
with elevated future default risk. It is well established that EDF level is a reliable reflection of expected default risk. However, we go
a step further and show how to select EDF level thresholds that allow users to focus costly and scarce resources on a highly targeted
selection of the most at-risk names in their portfolios. Then, we establish that EDF change, relative EDF level, relative EDF change, and
term structure inversion provide additional signals of impending credit distress, even among firms with similar EDF levels. Finally, we
discuss how to apply the Early Warning Toolkit in practice. First, however, we describe our analysis data.

2. Data Sample
The primary data for this study are EDF measures sourced from Moody’s Analytics’ CreditEdge Plus. For the following analyses, we
constructed a sample of global firms with EDF measures from 1999 through 2014 for which we have the most reliable default data. It is
reliable in the sense that there should be few “hidden” defaults – defaults that occurred, but that were neither reported nor observed –
which could bias our findings. The sample is therefore limited to what we call “Top 90” firms.

These can be thought of conceptually as large firms. More specifically, the “Top 90” subset was identified by first sorting non-financial
and financial companies, separately and within geographical region, by size (measured by sales for non-financials, and book assets for
financials). Working from the largest to the smallest, we then selected firms consisting of 90% of total outstanding liabilities in each
sub-group (by geographical region and by non-financial/financial sector).

In some of our analyses, we compare companies to their peer groups. We define peer groups first by country and industry1. For
example, the peer group of Ford Motor Co. would be the US Automotive Group. Since we utilize peer group medians, it is necessary
that a peer group has a minimum number of constituents for a median to be meaningful. If a company’s peer group has less than 10
constituents, we assign its peer group by industry alone2. The country-industry peer group for British American Tobacco, P.L.C., for
example, has only four constituents, and so its peer group is the Global Tobacco Group.

3. EDF Level: Setting the Optimal EDF Trigger Level
Regular model validation demonstrates the power of EDF measures to rank order firms by default risk, to signal credit distress
well before default, and, in the aggregate, to be consistent with the level of observed default rates. In other words, there is a clear
relationship between the EDF level and the subsequent level of credit risk. As a firm’s EDF measure rises, the risk of a future credit event
occurring also rises. However, it is not always clear as to where to draw the line. If, for example, a firm’s EDF level rises to 1% should
one become concerned about material default risk? Expressed differently, should one focus on the top 10% of firms by EDF level in
one’s portfolio or the top 20%? Setting the proper threshold level saves time and allows portfolio managers and credit analysts to
efficiently allocate limited resources for portfolio monitoring.

Consider a hypothetical optimal threshold, which we call t*. If a company’s EDF level exceeds the threshold, t*, a high likelihood of
default is expected, and close monitoring of this entity is recommended. This is represented in the first row and column of Exhibit 1.
Moving across this row, there are two possible outcomes: the firm defaults (true positive) or the firm does not default (false positive).
An ideal optimal threshold will produce many true positives and few false negatives, as false negatives waste scarce resources.
Alternatively, we expect that a company whose EDF level is less than the threshold, t*, will not default, indicating that close monitoring
is not necessary. This is represented in the second row and first column of Exhibit 1. Once again, there are two possible outcomes:
default (false positive) or no default (true negative). A false negative, or the unexpected default of a firm, could result in direct
credit losses. A good forward-looking credit risk measure minimizes the false negatives and false positives, while at the same time
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maximizing the true positives and true negatives. In this section, we describe a method for identifying an effective EDF threshold or set
of thresholds that is optimal in that sense.

Exhibit 1

Classification Errors Are a Function of the Threshold

3.1 Optimal Threshold
The Receiver Operating Characteristic (ROC) curve is a diagnostic graph that illustrates the performance of a predictive binary classifier.
The curve, as shown in Exhibit 2, below, is created by plotting the true positive rate against the false positive rate at various threshold
settings. The true positive rate, often referred to as sensitivity, is described by the vertical axis. The false positive rate, often referred
to as 1-sensitivity, is described by the horizontal axis. The gray dashed 45-degree line in the Exhibit represents the ROC curve for a
completely randomly set of thresholds. The least desirable combinations of true positive and false positive rates lie on this line. A
perfect threshold lies on the (0, 1) point on the graph, where the true positive rate equals 100% and the false positive rate equals 0%.

Exhibit 2

ROC Curve

If the costs and benefits of classification can be estimated, it is straightforward to calculate economically significant EDF triggers from
any given ROC curve. However, in practice, estimating the benefits and costs of classification may be difficult, imprecise, or impossible.
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From a practical perspective, a desirable goal would be to attempt to maximize predictive accuracy (where the costs and benefits of
true and false positives are weighted equally). To maximize the predictive accuracy of classification we can use either of the following
approaches: Youden’s Index or the Euclidean method. Each method attempts to derive an optimal threshold derived from historical
data. It is optimal in the sense that true positives and negatives are maximized and false positives and negatives are minimized at the
given threshold level.

Youden’s Index is a statistic that captures the performance of a diagnostic test. The index is defined for all points on the ROC curve as
the difference between the true positive rate and the false positive rate. The maximum value of the index, represented as J in Exhibit
3, is the point where the distance between the ROC curve and the Random Guess line is greatest. When we calculated Youden’s Index
for the data in our sample (across all countries and industries), we found an optimal EDF trigger level of 3.04%. This suggests that
portfolio exposures to firms with an EDF measure higher than 3.04% require further analysis. Comparing this trigger level to the overall
distribution of EDF measures, we observe that it falls near the 75th percentile of all the firms in our sample3.

Alternatively, the Euclidean method defines the optimal threshold as one that minimizes the distance between the perfect predictor
(i.e., the true positive rate equals 100% and the false positive rate equals 0%) and the ROC curve. This distance is represented as
d in Exhibit 4, below. Using the Euclidean method, we derive an optimal EDF trigger of 2.65%, which is slightly lower than the 75th

percentile of the distribution of EDF measures in our sample.

Exhibit 3

Youden’s Index Threshold Calculation for EDF Distribution, Global
“Top 90” Firms, 1999-2014

Exhibit 4

Euclidean Method Threshold Calculation for EDF Distribution,
Global “Top 90” Firms, 1999-2014

Depending on the sample being analyzed, optimal EDF thresholds dictated by Youden’s Index or the Euclidean method may differ
somewhat, but not materially overall. For the rest of this paper, we focus on trigger levels derived from Youden’s Index.

3.2 Operationalizing the EDF Early Warning Trigger
In practice, it is not sufficient to set a single trigger level, since the level and share of the distribution of EDF measures varies across
several key dimensions. Exhibit 5 shows box plots summarizing the distribution of EDF measures of our sample by region: North
America, Europe, Japan, and the rest of the world. Each box represents observations between the 25th and 75th percentiles. The blue
lines inside each box represent the medians, and the “whiskers” represent the 1st and the 99th percentiles of the distribution. The
absolute Youden’s Index trigger of 3.04% we derived from the full sample is clearly too high for three out of the four regions, since
it lies well above the 99th percentile of the EDF distributions for North America and Europe, and close to but still above the 99th

percentile of Japan’s EDF distribution.

Similarly, a single trigger would not be appropriate across industry sectors. Exhibit 6 shows that the distribution of EDF measures by
industry sectors varies widely. Financial Services, for example, have a much lower and more compressed distribution of EDF measures
than other sectors (as one would expect). An absolute trigger of 3.04% would fail to flag nearly any of the risky firms within that
sector.
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Exhibit 5

EDF Distribution by Region, Global “Top 90” Firms, 1999-2014
Exhibit 6

EDF Distribution by Select Sectors, Global “Top 90” Firms,
1999-2014

Time is an important dimension to consider, as well, when setting trigger levels. The level of default risk varies significantly over the
economic cycle. Exhibit 7 shows the trend in the mean and median EDF measures for global “Top 90” firms from 1999 to 2014. A single
EDF trigger of 3.04% (represented as the red horizontal line) will not be effective over time, as it is likely to miss many future defaulters
during periods of low default risk and to flag too many names during periods of high default risk. To address this we calculated time-
varying triggers, which generally follow the trend of the mean EDF for the overall sample. In Exhibit 7 the optimal time-varying
threshold is represented by the red line.

The optimal time varying threshold level exhibits some important characteristics. First, it is highly pro-cyclical – when default risk is
rising, the optimal EDF threshold increases, and vice-versa. In an environment of rising aggregate default risk, it becomes difficult to
identify which particular firms are relatively more risky because default probabilities for almost all firms are rising. In order to maximize
the difference between true and false positives, the optimal threshold must increase when aggregate default risk is increasing.
Conversely, in an environment of low default risk, it is relatively easier to prospectively identify which firms are relatively more risky, so
the optimal EDF threshold is commensurately lower.

The preceding analyses suggest that an ideal effective monitoring system using EDF measures should specify separate time-varying
optimal triggers for each sector/region combination. However, there are too few defaults to calculate Youden’s Index at this level of
granularity.

In order to operationalize the EDF trigger, we first calculated a time-varying trigger, separately, for non-financial and financial firms.
Next, for each of these sub-samples, we regressed the log of median EDF on the log of the time-varying trigger. In Exhibits 8 and 9, we
label the latter the “unadjusted” trigger. As shown in the scatter plots, there is a strong linear relationship between these two variables.
These two regressions each produced two estimated parameters - α and β– that describe the long-run relationship between median
EDF and the unadjusted, optimal time-varying triggers obtained via Youden’s Index. The dashed red lines, shown in the line charts in
Exhibits 8 and 9 below, represent the adjusted, time-varying triggers for non-financial and financial firms, which have been calibrated
from our estimates of the long-term relationship between median EDF levels and optimal EDF trigger levels. The trends of the adjusted
triggers generally follow or are higher than the mean EDF values for each sub-sample, as we would expect.

The approach we have developed for deriving sector specific time-varying optimal EDF thresholds has two benefits. First, it smooths
out undesirable volatility in the unadjusted, time-varying triggers. Second, it allows us to calculate triggers in real-time, for each of our
industry groups. To do this, we apply the estimated parameters, α and β, to median EDF measures for each industry. The 10 industries
identified as primarily involved in financial activities are combined into one for this exercise4. The parameters from the sample of non-
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financial companies are used, separately, for each of the other 51 industries. The result yields 52 different industry-specific triggers at
any given time.

Exhibit 7

Time-Varying Trigger vs Mean and Median EDF, Global “Top 90” Firms, 1999-2014

Exhibit 8

Median EDF vs Unadjusted Trigger (scatter plot) and Adjusted Trigger for Financials (line chart)
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Exhibit 9

Median EDF vs Unadjusted Trigger (scatter plot) and Adjusted Trigger for Non-Financials (line chart)

4. Going Beyond EDF Level: Additional Signals of Impending Credit Distress
EDF level is strongly positively predictive of default risk. In the last section, we described a way to set thresholds, or trigger levels, that
allow EDF users to accurately and proactively identify at-risk names in an efficient manner. In this section, we consider several other
metrics that also signal rising default or downgrade risk, even among firms with similar EDF levels. These metrics are especially useful
when one wishes to discriminate among the highest EDF names.

To uncover the added benefit of each metric, we first divided our sample of global “Top 90” firms into quartiles, by EDF level. Then we
further divided each quartile into four equal-sized buckets by: EDF change, relative EDF level, or relative EDF change. In the last section,
we split each EDF quartile into firms with inverted EDF term structures and firms with normal, or upward sloping term structures. We
examine each of these metrics in greater detail in sections 4.1 through 4.4.

4.1 EDF Change
We define EDF change as the percent change in the EDF measure over the last 12 months. Exhibit 10 shows one-year empirical default
rates, by EDF quartile, by EDF change quartile, and within each combination of EDF level and EDF change quartile5. As shown in the
last column, default risk rises as EDF level rises. The bottom row demonstrates that default risk also rises as EDF change rises. Looking
within each EDF level quartile (any of the first four rows), we notice that default risk rises as EDF change increases even among firms
with similar EDF levels. This is particularly noticeable in the third and fourth EDF level quartiles. In other words, looking at EDF change
in addition to EDF level alone, provides even more benefit to an already strong signal of default risk.

As shown in Exhibit 11, a deteriorating EDF trend also signals higher rating downgrade risk – overall, and within EDF level quartile.
The z-axis in Exhibit 11 represents the EDF level quartiles, the x-axis represents the EDF change, and the heights of the colored bars
represent the one-year downgrade rate for Moody’s long-term ratings. Looking at the chart, as EDF level rises (from front to back) the
bars representing the downgrade rate rise accordingly. Additionally, the EDF change quartiles, which increase from left to right, show
that as EDF change rises, downgrade rates rise, the likelihood of a rating downgrade also rises, across all the EDF level quartiles.
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Exhibit 10

One-Year Default Rates Conditioned on EDF Level and EDF Change,
%

Exhibit 11

One-Year Rating Downgrade Rate Conditioned on EDF Level and
EDF Change, %

4.2 Relative EDF Level
Relative EDF level is calculated as the ratio of each firm’s EDF measure to the median EDF measure of its industry peer group. For
example, a relative EDF level of two means that a firm’s EDF level is twice as high as the median for its peer group. Peer groups are
defined by country and industry (e.g., US Automotive Group), or if that group has less than 10 constituents, just industry (e.g., Global
Automotive Group). On average, firms with EDF levels higher than the median EDF of their industry peer group are 10 times more likely
to default than their peers.

The magnitude of increased default risk among firms with high relative EDF levels is dampened, but not eliminated, once we control
for EDF level. As Exhibit 12 shows, one-year observed default rates rise with relative EDF levels, within EDF level quartiles. This is
particularly apparent among the highest EDF level firms, as represented by the red colored bars.

The results are similar for rating downgrade rates. As EDF level rises, downgrade risk rises. And, as relative EDF level rises (shown in
Exhibit 13 as a move on the x-axis from left to right) downgrade risk rises, within all EDF level quartiles.
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Exhibit 12

One-Year Default Rates Conditioned on EDF Level and Relative EDF
Level, %

Exhibit 13

One-Year Rating Downgrade Rates Conditioned on EDF Level and
Relative EDF Level, %

4.3 Relative EDF Change
Relative EDF change is the one-year change in each firm’s EDF level less that of its industry peer group’s median EDF change (ΔEDF[i] -
ΔEDF[G]). On average, firms with EDF changes greater than the changes in the median EDF of their industry peer group are more than
twice as likely to default than their peers. Looking within EDF level quartile, we still observe the relationship that the higher the relative
EDF change, the higher are observed default and rating downgrade rates (Exhibits 14 and 15).

Exhibit 14

One-Year Default Rates Conditioned on EDF Level and Relative EDF
Change, %

Exhibit 15

One-Year Rating Downgrade Rates Conditioned on EDF Level and
Relative EDF Change, %
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4.4 Slope of the EDF Term Structure
Moody’s Analytics produces annualized EDF measures with one-year to ten-year time horizons. The EDF term structure recognizes
that systematic factors play a relatively larger role in a company’s default risk over a shorter horizon, while idiosyncratic risk plays a
relatively larger role over a longer horizon. Longer horizon EDF measures, therefore, are more stable over time than shorter horizon
EDF measures. Together, the three components to the EDF term structure – a long-run, central default tendency, an aggregate factor,
and a firm-specific factor – capture these concepts. EDF term structures are typically steeper during economic expansions and flatter
during recessions. In general, low-risk firms have upward sloping term structures that invert when risk increases; high-risk firms have
downward sloping term structures.

When a firm’s five-year EDF measure is lower than its one-year EDF measure, we describe its term structure as inverted. Intuitively, an
inverted EDF term structure implies that a firm is more likely to default in the near term than over the longer term, assuming it survives
to the longer term. On average, firms with inverted EDF term structures are 13 times more likely to default than firms with upward
sloping (normal) term structures. Exhibit 16 shows one-year observed default rates conditioned on EDF level and EDF term structure
slope. The empirical default rate, represented by the red bar, is higher even when controlling for EDF level. The effect is especially
pronounced for firms in the quartile with the highest EDF levels. The combination of a relatively high EDF level and an inverted EFD
term structure is associated with an empirical default rate five times higher than if the EDF term structure were upward sloping. An
inverted term structure also signals higher risk of rating downgrade (Exhibit 17), particularly for firms with relatively low EDF levels.

Exhibit 16

One-Year Default Rates Conditioned on EDF Level and EDF Term
Structure Inversion, %

Exhibit 17

One-Year Rating Downgrade Rates Conditioned on EDF Level and
EDF Term Structure Inversion, %

5. Putting It All to Work in Practice
EDF data and a wide variety of analytic tools are available via CreditEdge Plus. Many of these tools, such as custom portfolios and alerts
can be leveraged to put the EDF Early Warning Toolkit into practice. Additionally, to help users efficiently analyze exposures in their
portfolios and to use the early warning metrics discussed in this paper, we have created an EDF Early Warning Toolkit Excel template
that utilizes the CreditEdge Excel Add-In. The template offers a way to quickly and easily identify which portfolio exposures warrant
further review. Each of the primary columns in the Excel spreadsheet corresponds to the five metrics highlighted in the Early Warning
Toolkit. Color coding indicates whether a company warrants further review on the basis of each individual metric as well as overall. For
example, the aggregate company risk score for Petroshale, Inc., shown in the last column of Exhibit 18, is highlighted in red, signaling
that on the basis of the combination of these metrics the firm exhibits relatively high default risk and requires additional attention.
Petroshale’s EDF level (as compared to the trigger level for global oil companies), term structure, and relative EDF level are signaling
a high degree of distress. Its EDF change signals a moderately high level of distress. Only its relative EDF change appears normal.
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Names with aggregate company risk scores highlighted in orange or even yellow may warrant additional review, depending on a user’s
degree of risk aversion and available resources. The EDF Early Warning Toolkit is an easy to use and powerful addition to the portfolio
monitoring process.

Exhibit 18

Excel Template for the EDF Early Warning Toolkit
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Endnotes
1 There are 61 industry classifications.

2 This has little impact on companies in North America, Western Europe, and Southeast Asia.

3 We can gain a greater intuitive understanding of the meaning of this optimal threshold by comparing it to the empirical default rates of companies rated
by Moody’s Investors Service. At a one year time horizon, a 3.04% default rate is consistent with a B1 long-term rating. In other words, across firms in all
industries in countries in our data set, if a firm’s EDF measure were to rise to a level consistent with a B1 rating it can be expected to exhibit heightened risk
of default over the next year.

4 These are: Banks and S&Ls, Finance Companies, Finance NEC, Insurance-Life, Insurance-Prop/Cas/Health, Investment Management, Lessors, Real Estate,
Real Estate Investment Trusts, and Security Brokers & Dealers.

5 It is worth emphasizing that EDF levels are measured at a point in time, and empirical default rates are measured one year after that date. The results in
Exhibits 10 and 11 highlight the predictive power of EDF levels and EDF changes.
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